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Abstract

Constrained automated seeded region growing (CASRG) is an algorithm for automated grain boundary detection. It uses as input a single

digitised microphotograph, such as ones obtained from a polarising microscope with an attached digital camera. In addition to this, it requires the

user to click on the clasts within the microphotograph that the user wishes to obtain boundaries for. The algorithm requires no subsequent human

input. The algorithm is based on the seeded region growing (SRG) algorithm of Adams and Bischof [Adams, R., Bischof, L., 1994. Seeded region

growing. IEEE Transactions on Pattern Analysis Machine Intelligence 16, 641–647]. We have modified this algorithm to be guided by constraints

and to adapt to the heterogeneity of colour information in the image. Imposition of these pre-determined additional conditions enables automated

grain boundary detection without human intervention. The accuracy of CASRG has been validated through two benchmarking comparisons; one

lithology with low tectonic strain and a second with high strain are used. The CASRG measurements are compared with those from hand drawn

boundaries, which are used as a gold standard. Comparison is made using (a) a non-overlap statistic, (b) shape features, (c) strain estimates. In each

case, the CASRG method compares very favourably with the gold standard.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Strain analysis and the study of regional strain patterns are

invaluable tools in interpreting the tectonic history of a region.

However, in considering 12 recently published studies, a wide

variability in sampling density for finite strain characterisation

is demonstrated. The data in Table 1 indicates that,

independent of the size of the study area, there is an upper

limit of around 30 to the number of samples used. This results

in very low sampling densities when the study area becomes

large. There might be a number of reasons for this observation,

e.g. homogeneity of deformation in an area, availability of

suitable exposure, etc. However, we believe that the primary

reason is the laborious and time consuming methods available

for obtaining the raw data required for strain analysis.

There is one notable exception to the 30 sample limit

provided by the study of Mukul and Mitra (1998). They

analysed 119 samples of quartzite from an area of 200 km2
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belt, Utah, USA. However, they employed a semi-automatic

procedure for obtaining the data for strain analysis as described

by Mukul (1998). In this paper we develop CASRG, a semi-

automatic algorithm for strain analysis that enables rapid and

accurate extraction of data for strain analysis. Automation of

this process will allow strain analysis studies to break the 30

sample limit and introduce the possibility of statistical analysis

of spatial strain variation, as in Mukul (1998). This paper

concentrates on the problem of extracting data for strain

analysis from sandstones and looks at deformed examples from

the Variscides of southwest Ireland (Meere, 1995) and the

Moine of northwest Scotland. The CASRG algorithm will yield

data that is applicable to strain analysis methods based on

marker shape (e.g. the mean radial length method of Mulchrone

et al. (2003)) and to methods based on the relative position of

markers such as those by Fry (1979) and Mulchrone (2003).

Traditional methods of measurement required sustained use

of the polarising microscope with skilled manipulation of the

rotating stage and knowledge of the use of various graticules

(Ramsay, 1967, section 5.2). With the proliferation of digital

cameras, it is now common place to obtain digital images of a

field of view as seen through the microscope (Fig. 1a). Digital

images are easily manipulated by computer graphic software
Journal of Structural Geology 28 (2006) 363–375
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Table 1

Area, number of samples and sampling density for a selection of recent studies

which included strain analysis, at least in part

Author(s) Study area

(km2)

No. Samples Samples per

km2

Meere (1995) 70 23 0.32

Srivastava et al. (1995) 2.5!10K9 4 1.6!109

Yin and Oertel (1995) 12 8 0.66

Mukul and Mitra (1998) 200 119 0.59

Roig et al. (1998) 500 8 0.02

Bresser and Walter (1999) 180 15 0.08

Althoff et al. (2000) 800 6 0.01

Hippert and Davis (2000) 12 9 0.75

Hippert and Davis (2000) 18 3 0.16

Hippert and Davis (2000) 4 6 1.50

Simancas et al. (2000) 60 28 0.46

González-Casado and

Garcı́a-Cuevas (2002)

2000 37 0.02

Mulchrone (2002) 55 18 0.33

Bailey and Eyster (2003) 14 8 0.57
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packages that allow the outline of clast boundaries to be easily

traced. Alternatively the boundaries may be manually traced

from a printout and then scanned into a digital image (i.e. as

suggested by Mukul (1998) and Mulchrone et al. (in review)).

Given a set of such boundaries, it is possible to make the

measurements required for strain analysis either manually or

using automated methods (Mulchrone et al., in review).

Although methods that require manual identification of

boundaries represent a striking improvement on totally manual

methods for data extraction, there is room for further

improvement. The primary aim of automatic clast boundary

detection is to remove the manual step of marking boundaries.

The task is especially onerous if one is engaged in a strain

mapping study, where thousands of clasts have to be marked for

reliable measurements of strain. Concomitantly, one is also

seeking increased speed and accuracy in making strain

measurements (Meere and Mulchrone, 2003). Speed is guaran-

teed not so much by the efficiency of the algorithm itself, as by the

increase in processing power of computers. The issue of accuracy

is of course paramount in any scientific endeavour. Given the

nature of the current problem, clasts will always exist where

manual marking of boundaries will be better than any automatic

identification algorithm. In fact, given time, patience and
Fig. 1. (a) Original microphotograp
practice, manual marking will be at least as good as the best

automatic clast boundary detection algorithm. In practice,

however, lack of dexterity with the mouse or pen can cause

manually identified boundaries to deviate from the true boundary

of the clast. In most cases, these errors will be negligible in terms

of the accuracy of measurements made on the clast. Therefore, the

aim is to develop a method that will deliver parameter estimates

which are close (in an average sense) to those obtained by careful

manual marking.

Previous work on automated clast boundary detection (e.g.

Heilbronner, 2000; Ailleres et al., 1995; Bartozzi et al., 2000),

demonstrates the difficulty of the problem. These papers address

the difficulty by introducing extra information about the grain

boundaries: for example Heilbronner (2000) has utilised multiple

images of the same field of view and Bartozzi et al. (2000) use

SEM images. Automatic clast boundary identification from a

single image is an even harder problem. Clasts will be adjacent to

each other and appear to be the same colour (e.g. in Fig. 1b, clasts

10 and 11). It will be very difficult to tell these apart. Fortunately,

for strain measurement, we do not have to measure all clasts, but

only enough for an accurate strain analysis (around 150 according

to Meere and Mulchrone (2003)). In any given thin section image,

there will be some clasts that appear well defined due to a sharp

colour contrast with their immediate neighbourhood. It is the

boundaries of these clasts that we will seek to identify.
2. Region based identification

Previous work on automatic clast boundary identification

(e.g. Heilbronner, 2000; Bartozzi et al., 2000) utilise edge-

detection based methods to identify the boundary of the clasts.

Typically the initial boundaries produced by edge detection

have many imperfections (some edges occur within the clasts

as well as on the actual boundary and sometimes edges are

absent on the real boundary). These initial boundaries are then

post processed to obtain more realistic boundaries. While this

approach appears to work satisfactorily for measurements such

as clast count and clast size distribution, the subjectivity

introduced by the post processing methods make them

unsuitable for strain analysis, where crucial parameters are

commonly the physical orientation of the clast (as opposed to
h. (b) Hand drawn boundaries.
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the c-axis orientation), aspect ratio or relative location. An

alternative approach is taken here, where instead of directly

identifying the boundary, we identify a ‘region’, i.e. a set of

points that purportedly belong to the clast. From an image

processing perspective, region and edge based methods are

equivalent. Instead of imperfections in the clast boundary by

edge detection, we have holes in the identified clast (see Fig. 5).

But for extracting features like major and minor axes,

orientation, centroid, etc., the presence of these holes has a

far diminished role to play than incorrectly identified edges.

Consequently, no post processing is required in this approach.

In other words, the region based method of identifying clasts is

potentially more convenient for an automated feature

extraction algorithm.
2.1. Seeded region growing algorithm

In the previous section, we have already mentioned that we

are interested in identifying a few well-defined grains per field

of view. The most convenient method in image processing for

identifying a few well-defined regions in an image is the seeded

region growing algorithm (SRG) (Gonzalez and Wintz, 1987;

Adams and Bischof, 1994). The basic idea in SRG it to start

with a point (or seed) which we know belongs to the region of

interest. The region is then grown by adding points that are
Fig. 2. (a) Threshold too low. (b) Threshold too high. (c) Optimal
similar to the seed. In our variation we deal with one grain at a

time, as follows:Basic SRG algorithm

1. Select a seed point. It is added to a queue called a sequential

search list (SSL).

2. Remove a point from the SSL. Look at the neighbouring

points of this chosen point. If they are similar to the region

already grown, add them to the region (and the SSL). If they

are not, add them to the boundary of the region.

3. Repeat step 3 till the SSL is exhausted. At that point, we

have our region identified.
2.2. Selecting seeds

It remains to describe how the seed points are selected and

how we judge if a point is similar to a region. The seed is

selected by the user. The user looks at the picture of the thin

section and selects the grains they want to identify by clicking

at a point somewhere inside the grain of interest. Although this

procedure requires human intervention, the clicking itself takes

very little time to accomplish. There is very little subjectivity

involved, since the algorithm produces more or less the same

result no matter where in the region you click, provided the

region is of reasonably uniform colour. The effort of the user

(and also the subjectivity) is in identifying suitable grains for
threshold. (d) Distribution of optimal thresholds across grains.
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clicking. Apart from utilising the excellent perception of colour

contrast in humans, this step also allows the user to incorporate

their expert knowledge of the fabric. For instance they may

want to avoid certain grains that appear polycrystalline or

belong to a different mineral than the one currently of interest.
2.3. Testing pixels for similarity

The basic idea behind ‘testing’ a pixel is to judge whether it

is similar, in a sense to be defined, to pixels already identified to

be within the region. There are a variety of criteria available for

judging whether a point is similar in colour to a region

(Haralick and Shapiro, 1985). The criterion of similarity used

in this study is now described.

Colour information can be recorded in many different

formats. Here it is viewed as a three-dimensional vector cZ
(cR,cG,cB) with each component giving a level (between 0 and

1) of Red, Green or Blue. Thus (0,0,0) would be Black (absence

of all colour), (1,0,0) would be Red, (1,1,1) would be White,

etc. A simple way to compare whether a point p1 and a region R

are of similar colour is by measuring the Euclidean distance

between their colour vectors c1 and �c:

dðc1; �cÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1RK �cRÞ

2 C ðc1GK �cGÞ
2 C ðc1BK �cBÞ

2

q

Here the colour of a region is represented by its average

colour value �c. This is just the average of all the colour vectors

belonging to points in the region.

In step 2 of the SRG algorithm, we judge whether a new

point belongs to the current region R, we need to check whether

this distance is above or below a certain threshold t, i.e.

pi2R if dðci; �cÞ! t

The choice of threshold is delicate: it should be such that it

will be large enough to allow for natural variation within the

region (even relatively uniform regions will have some

variability in colour information), but small enough to be

able to detect a change from points outside the region. Thus, if t

is too small, the identified region will be too small and vice

versa (see Fig. 2a and b). The choice of optimal t can be made
Fig. 3. (a) Generalised coefficient of variation (CV) as a function of threshold. (b) G
by trial and error (by a visual comparison of the identified

region to the original picture). Because of a variety of colours

and brightness levels present in the same image, different

grains may have substantially different optimal thresholds.

Fig. 2d presents the distribution of optimal thresholds for the

grains identified in Fig. 1b. Classical SRG (Gonzalez and

Wintz, 1987) uses a single threshold value for all grains. Given

the big range of thresholds and the relative sensitivity of grain

identification to the choice of threshold (as demonstrated in

Fig. 2a–d), we need to choose the optimal threshold separately

for each grain. However, to set the optimal threshold manually

using the trial and error method may be quite time consuming.

Thus the need arises for an automated method of choosing the

optimal threshold.

2.4. Automated choice of threshold

It is possible to choose the optimal threshold without human

intervention. The choice of optimal threshold is guided by the

level of variability present in the interior of the clast. The less

variable a region, the lower the threshold required. Variability

inside a region can be measured by the generalised coefficient

of variation, which is defined as follows:

CVðRÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
i cRiK �cR

� �2
q

�cR

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
i cGiK �cG

� �2
q

�cG

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
i cBiK �cB

� �2
q

�cB

Here the sum is overall n pixels i in the region R. Colour

data typically have skewed distributions, where brighter

regions will have correspondingly higher variances. In order

to adjust for varying levels of brightness across clasts, we need

to scale the variance by the average brightness level of the

region. It may seem natural to calculate the CV for the region

that has been grown, but, in practice, this will always give a

low value. This is because the region growing algorithm will

always select pixels of similar colour information, which

means that the region grown by SRG will always have low
rains 10 and 11 of Fig. 1b at optimal threshold before application of constraints.
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variability. For instance, imperfections in the grain are

excluded from this calculation. Instead, we have found it

more useful to calculate the CV for an area which encloses the

grown region. The principle is as follows: if the grown region

includes primarily all or part of a grain, the enclosing region

should have a low CV overall; if, on the other hand, the region

spans two or more grains and/or inter-granular matter, which

have different colour schemes, the enclosing region would have

a high CV. For our convenience, we have used a fitted ellipse as

the enclosing area, but one could choose any other shape, such

as a rectangle or a convex hull, to the same effect. The

important requirement is that the enclosing shape be as tight as

possible to the identified region.

As an illustration of this idea, clast 4 in Fig. 1b has an

approximate generalised CV of 0.35, whereas the overall CV

for the whole image is 0.75. This low variability inside a grain

can be utilised for optimal threshold selection. For instance, a

low threshold will yield a small region inside a grain, as in

Fig. 3. In this case the CV is 0.27. A larger threshold will yield

a larger region, but as long as this region is within the grain, as

in Fig. 2c (CVZ0.35) the CV will not increase substantially.

Once the region exceeds the grain, as in Fig. 2d the CV rises

sharply to 0.55. This behaviour is shown in Fig. 3a. Based on

this property of the CV statistic, a grain can be characterised as

the maximal region with a CV less than a given cutoff CV

value. The choice of this cutoff will depend on the variability in

the image. For the image in Fig. 1a (and other similar images),

we have empirically established that a cut-off CV value of

around 0.4 works satisfactorily.
2.5. Imposition of additional constraints

The automated region growing algorithm described above

should work well when we have sharp contrast between the

grain and its immediate neighbourhood. However, when we
Fig. 4. Regions identified by CASRG with hand-d
have two grains of similar colour side by side, as for instance in

the case for grains 10 and 11 in Fig. 1b, it will be hard to

separate them based on variability alone. In this case the CV of

the region combining the two grains (shown in Fig. 3b) is

around 0.33. So how can one separate them? To do so, we

utilise the information provided by the user in the seeding

process. By seeding both grains, the user is instructing the

program to grow them separate from each other. Therefore any

threshold that generates a region containing two or more seed

points is too large for the job.

As a general principle, when we have situations where the

colour contrast alone is not sufficient to delineate a clast, we

must make use of additional constraints, such as user input as

described above, or other constraints such as size or shape. The

downside of this is that imposition of such constraints often

needs additional user input. However, in this case, we are

fortunate that the information required is already supplied

during the seeding process. This may not always be the case. In

this case, we may need to supply additional constraints in the

form of ‘spoiling seeds’, i.e. seeds supplied purely for the

purposes of limiting the size of the automatically identified

region.

The discussion in Section 2 can be summarised in the

following algorithm:Constrained automated seeded region

growing (CASRG) algorithm:First, the user selects seeds

(numbered 1–k) and a set of spoiling seeds (1–j). For each

seed in this list, the following (automated) loop is carried out:

1. Fix threshold t

2. Grow region by SRG at threshold t

3. Compute CV of grown region

4. if (CV!cutoff) increase threshold;

else decrease threshold

5. check for constraints (and modify threshold appropriately)

6. Iterate steps 1–5 to convergence of threshold.
rawn boundaries from Fig. 1b superimposed.
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The algorithm has been coded for the MATLABw

environment (www.mathworks.com). This code can be down-

loaded from http://euclid.ucc.ie/pages/staff/kingshuk/casrg.

zip. Users should be aware that to run this code they need to

have the MATLAB Image processing toolbox installed.
3. Methodology for the validation of CASRG

The result of applying the CASRG is shown in Fig. 4. With a

few exceptions, the identified regions are broadly similar to the

clast boundaries outlined in Fig. 1b. However, there are

significant differences. The CASRG identified regions are full

of holes that represent areas of non-uniform colour within the

targeted clasts. While small holes can be dealt with easily by

employing simple morphological operations such as ‘closing’

(see e.g. Matheron, 1975), larger holes are not as tractable.

However, such holes do not seriously affect the value of many

quantitative features obtained from these regions. Another

difference is that many identified regions have appendages that

lie outside the actual clast boundary. This is primarily due to

the presence of areas of similar colour adjacent to the clast.

While visual inspection of the results gives us a rough idea,

‘objective’ measures of the quality of region fit are essential to

make accurate comparisons. Of course, to measure the quality

of fit, we need to know the ‘true’ regions. As with most real

problems there are no ‘absolutely true’ regions available to us.

However, in the introduction, we have argued that the manually

drawn boundaries, if carefully drawn by an expert, are

potentially the closest approximation to the grains in the field

of view. Therefore, we will use the hand drawn boundaries, for

example those in Fig. 1b as the ‘gold standard’ against which to

compare the CASRG regions.

We will evaluate three different aspects of the quality of fit:

(a) The ‘non-overlap’ of the CASRG regions with the ‘gold

standard’

(b) A comparison of extracted features between CASRG

regions and the ‘gold standard’

(c) Comparison of strain estimates from CASRG regions and

the ‘gold standard’
Fig. 5. (a) Ellipses fitted by moment method to regions identified by CASRG. (b

boundaries as reference.
3.1. Non-overlap statistic

Given two regions A and B, the non-overlap statistic

no(A,B) (Mulchrone et al., in review) measures the area where

the two regions do not overlap. The non-overlap area is divided

by the area of B (the base area) to express the non-overlap as a

scale-invariant proportion. Mathematically, this statistic can be

expressed using the symmetric difference of two sets:

noðA;BÞZ
areaððAKBÞg ðBKAÞÞ

areaðBÞ

The non-overlap statistic is a unit-less quantity that can be

used to measure how similar (in shape, size and location) two

regions are to each other. If two regions are identical, their non-

overlap should be zero. The bigger the non-overlap, the more

they are dissimilar. It is possible for the non-overlap to be

greater than 1 (for instance, if A and B do not intersect with

each other), but that would indicate a pretty bad fit. Fig. 5b

shows us the distribution of the non-overlap values for regions

drawn using CASRG (Fig. 4) versus those drawn by hand

(Fig. 1b), with the hand drawn regions used as the base area B.

The majority of the regions have a non-overlap statistic

between 15 and 55%. Two values are between 65 and 80%. The

average (median) value is 36%. While these values do not have

an immediate interpretation, these values can be used as a

benchmark for future algorithms to improve on.

3.2. Feature based comparison

The primary application of CASRG in structural geology is

for the purposes of mensuration of clasts. Common features

requiring mensuration are the area, centroid, major and minor

axes and the orientation of each clast. Apart from their

relevance to procedures such as strain analysis, these features

are intrinsic geometric properties of the objects, which describe

their shape, size and location. Therefore comparisons of such

features are suitable for evaluating the quality of fit. One

advantage of region based processing is that such features can

be quickly computed from the moments of pixel co-ordinates

of points belonging to each region. For instance, the area is

obtained as the ‘zero’-th moment and the centroid as the first
) Distribution of non-overlap statistic for CASRG regions with hand drawn

http://www.mathworks.com
http://euclid.ucc.ie/pages/staff/kingshuk/casrg.zip
http://euclid.ucc.ie/pages/staff/kingshuk/casrg.zip
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moment. The other parameters mentioned can be obtained

using an eigen decomposition of the ‘moments of inertia’, or

second moment matrix, of these points (Mulchrone and Roy

Choudhury, 2004). A graphical representation of these

features, in the form of fitted ellipses, is shown in Fig. 5a.
3.3. Strain analysis

The features described in Section 3.2 are often used for

strain analysis in structural geology. Therefore an application

specific validation of CASRG is by comparison of strain

estimates with the gold standard. A number of methods of finite

strain calculation appear in the literature (e.g. Robin, 1977; Yu

and Zheng, 1984; Robin and Torrance, 1987; Mulchrone and

Meere, 2001; Mulchrone et al., 2003). For reliable strain

calculation by the Rf/f method, we need at least 150 clasts

(Meere and Mulchrone, 2003). For this purpose, we require

larger scale examples, which are considered in the next section.
Fig. 6. (a) Low strain example. (b) Low strain boundaries. (c) Low strain regions
4. Large scale examples

The photomicrograph in Fig. 1a is of sufficiently high

magnification so that problems associated with automated clast

boundary detection could be appreciated by visual inspection.

However, for reliable strain analysis, an example with far

greater number of clasts is required. For this purpose, we have

chosen two examples, one with low strain (Fig. 6a) and one

with high strain (Fig. 6d). The low strain example is an Upper

Devonian quartz arenite from the Variscides of southwest

Ireland, while the higher strain example is a deformed Cambro-

Ordovician quartzite from the Moine of northwest Scotland.

Although it is difficult to examine individual clasts in any

detail, it appears from visual inspection of Fig. 6c–f that

CASRG does a reasonable job of identifying the majority of the

clasts, although it is unsuccessful in a few. It should be noted

that the choice of clasts was first made during the process of

hand drawing the boundaries in Fig. 6c and e. CASRG was
. (d) High strain example. (e) High strain boundaries. (f) High strain regions.
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subsequently applied on all the clasts selected in this process.

Given the large number of clasts in this example, it is not

feasible to discuss each of these clasts individually. Therefore

statistical methods are needed to check the correspondence

between the various methods.
4.1. Non-overlap comparisons

As described in Section 3.1, the fidelity of the regions

identified by the CASRG method (Fig. 6a and d) can be

measured by comparing them with the hand drawn boundaries

(Fig. 6b and e) using the non-overlap statistic. The distribution

of the resulting non-overlap values is given in Fig. 7. As can be

seen from the histograms (Fig. 7a and b), both distributions

have a heavily skewed shape, with the majority of values less

than 0.5, but a reasonable number greater than 0.5. The average

(median) non-overlap value for low strain is about 0.31, while

that for high strain is 0.37.

To explore the pattern of non-overlap values, we look at a

plot of the non-overlap value against the clast area (Fig. 7c and

d). The results are somewhat contradictory. In Fig. 7c, the plot

clearly shows that the non-overlap generally decreases with the

size of the clast. This is not unexpected, given that the non-

overlap statistic is a measure of relative error. It can be argued

that if the magnitude of error remains the same, the relative

error will decrease with increased size. A more mathematical
Fig. 7. (a) Histogram of non-overlap for low strain example. (b) Histogram of non-ov

low strain example. (d) Variation of non-overlap against clast size for high strain e
discussion of this result is given by Mulchrone et al. (in

review). Even accounting for this decreasing trend, one set of

points in the extreme left of Fig. 7c stand out. These points

correspond to clasts of a very small size, which also have a very

high non-overlap value. This cluster of points contains all

clasts with a non-overlap value of 1 or more, with the exception

of two clasts of intermediate size. Clearly CASRG does not

identify such small clasts very well. It is a moot point whether

measurements made on these clasts by other methods also

suffer similarly. It can be argued (with some justification) that

any measurements made (by CASRG method) on these clasts

be treated with a pinch of salt. One option is to ignore such

clasts from all further calculations. In practice, the judgement

of which clasts to omit cannot be made on non-overlap values

(which cannot be computed as hand drawn boundaries will not

be available). An obvious alternative is to use the size of the

clast. Based on this observation, we suggest omitting clasts of

size 500 or lower. The size threshold for exclusion of clasts is

somewhat arbitrary, given that there are errors in all

automatically identified regions. This line of reasoning would

lead to calculations where observations are given weight

roughly proportional to the clast size, but for reasons of

conciseness, will not be pursued here. Another factor that can

cause poor identification is if the clasts are in extinction. In this

case, they are often hard to distinguish from the background,

which also appears dark (as it is a cross polar image).
erlap for high strain example. (c) Variation of non-overlap against clast size for

xample.



Fig. 8. Comparison of features of CASRG vs. hand drawn regions for low strain example.
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Fig. 9. Comparison of features of CASRG vs. hand drawn regions for high strain example.
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Table 2

A comparison of finite strain estimates (Rs, f) using the method of Mulchrone

et al. (2003) from data acquired manually and using CASARG

Rs (manual) Rs

(CASARG)

f (manual) f

(CASARG)

Low strain

sample

Mean radial

length

(1.03) 1.08

(1.15)

(1.03) 1.09

(1.16)

(K44) 131

(134)

(K43) K33

(133)

Centre to

centre

(1.01) 1.06

(1.17)

(0.01) 1.01

(1.14)

(K42) K15

(41)

(K42) 38

(42)

High strain

sample

Mean radial

length

(1.86) 1.98

(2.14)

(1.75) 1.85

(1.98)

(K2) K1 (2) (K5) K4

(K1)

Centre to

centre

(1.28) 1.70

(2.13)

(1.25) 1.66

(2.08)

(K19) 3 (25) (K25) K2

(22)
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The average non-overlap value for such clasts is 0.53, which is

substantially higher than the overall average.

We now turn our attention to the plot for high strain

(Fig. 7d). The pattern is not quite the same, in that there are a

fair few large grains with larger non-overlap values and not that

many small grains with large overlap values. It should be noted

that the scale of these images is different: the low strain image

is 1200!1600 pixels in size while the high strain image is

480!640. Therefore the areas in Fig. 7d need to be multiplied

by a factor of 2.5!2.5Z6.25 when comparing with Fig. 7c.

But that alone does not explain the relatively larger values of

non-overlap for the larger clasts. On examination of the image

in Fig. 6d, we see that there is a lot more undulose extinction in

this field of view compared with Fig. 6a, no doubt due the

presence of greater strain. Undulose extinction means that there

is systematic variation in colour from one part of the clast to the

other. This typically causes CASRG to leave out parts of the

clast that are different in colour from the area where the seed

lies. This leads to high non-overlap with the hand drawn

boundaries, because experts can in most cases differentiate

between undulose extinction and grain boundaries. The reason

this affects large clasts more than small ones is because large

clasts are more likely to suffer from undulose extinction than

smaller ones. Despite these problems for a number of clasts, it

is reassuring to note that the average non-overlap for the high

strain example (0.37) is only slightly higher than that of the low

strain example (0.31). One mitigating factor in this comparison

is that the high strain example has far fewer grains in

extinction, which caused the average performance in the low

strain case to suffer. Other factors that can cause poor

identification are polycrystalline clasts and neo-grain for-

mation. Clasts with a high concentration of inclusions would

also cause difficulties.

4.2. Comparison of features

Feature based comparisons are important from the viewpoint

of applications. These comparisons between features, namely

centroid, area, major and minor axis and orientation, extracted

from CASRG and hand drawn boundaries are shown in Figs. 8

and 9. As explained in Section 4.1, we have excluded very small

clasts (clasts with area less than 500 and 75, respectively, for the

low and high strain case) from these comparisons. The diagonal

line through these figures is the line yZx, which represents a

perfect match between two sets of measurements.

If we first look at Fig. 8, the low strain example, we can see

that there are roughly equal numbers of points on either side of

the line in all six plots. This indicates that one method does not

systematically over- or underestimate the parameters with

respect to the other method. Moreover, most points tend to be

very close to this line. This pattern gives rise to a high linear

correlation between the two sets of measurements. In

particular, the centroids obtained by both methods appear

virtually identical in most cases. The correlation between the

two measurements is less marked for the orientation parameter.

This is caused by some clasts for which the orientation

measurement differs widely, although most tend to agree.
Some of this disagreement is spurious, caused by the artificial

separation of Cp/2 and Kp/2. In actual terms, these two

orientations are the same. It is just that they cannot be

reconciled on a linear plot. Adjusting for these points will make

the correlation substantially higher (0.85). The other features,

namely size, major and minor axes, are all estimated very well.

In relation to the data itself, two observations that can be made

are: (a) the orientation plot appears to have an approximately

uniform spread of values between Cp/2 and Kp/2; (b) the

range of values in the major and minor axes are close to each

other, indicating low axial ratio, as one would expect in a low

strain situation.

In Fig. 9 (high strain example), too, the correlations are all

very high except for the orientation, indicating good agreement

between CASRG and the hand drawn boundaries. Correlations

for the major and minor axes are slightly lower than those for

the low strain case. There appears to be a slight downward bias

in the CASRG y centroid measurements (most points in this

plot are below the line yZx). This could be an artefact caused

by resizing of the hand drawn boundary image, whose size is

enhanced to facilitate drawing. Despite this, the agreement in

the two sets of centroid measurements is still remarkable. In

relation to the data from the high strain example, we can note

that: (a) the range of orientations appears to be restricted

between Cp/4 and Kp/4, indicating the presence of a strong

fabric. (b) The range of values in the major axes is roughly

double that of the minor axes indicating an axial ratio of two or

more.
4.3. Comparison by strain analysis

A number of methods of finite strain calculation appear in

the literature based on the shape characteristics of strain

markers (e.g. Robin, 1977; Yu and Zheng, 1984; Robin and

Torrance, 1987; Mulchrone and Meere, 2001; Mulchrone et al.,

2003) or based on the position of nearest neighbours (e.g. Fry,

1979; Mulchrone, 2003). Results of strain calculations done

using the algorithms given in Mulchrone et al. (2003) (mean

radial length) and Mulchrone (2003) (nearest neighbour) are

shown in Table 2. Calculations done using the other methods
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mentioned gave similar results and are omitted for brevity.

Table 2 shows us that the Rs value estimated using manual and

CASRG derived data are virtually identical. The wide

confidence interval for the f parameter in the low strain case

is expected (Meere and Mulchrone, 2003). The remarkable

similarity of the strain results can be attributed to the fact that

strain calculation is, broadly speaking, an averaging procedure.

In the previous section, it was demonstrated by plots of the

measurements that there were no relative biases between the

methods. This combined with the averaging possibly leads to a

cancellation of relative errors. A formal error analysis is not

presented here.

5. Discussion and conclusions

The CASRG algorithm is an attempt to address what from

an image processing perspective is a difficult problem. As an

image, a sandstone microphotograph has quite complex

structure, both within and outside the clast components. Use

of colour information alone fails to deliver satisfactory grain

boundary detection. Other authors have addressed this problem

by injecting additional information, such as multiple images of

the same field of view (Heilbronner and Pauli, 1993;

Heilbronner, 2000) or orientation contrast images using SEM

(Bartozzi et al., 2000). Acquisition of such images is often a

tedious and time-consuming task. Moreover, it may require the

use of special equipment (such as specialised electron

microscopes) to which many geologists may not have access.

In the absence of such information, i.e. limiting ourselves to a

single microphotograph, we have attempted to derive

additional information by user input. The nature of input

required (seeding) is such that from the user’s perspective it is

quick, simple to perform and reasonably objective (i.e. user

independent). From an image processing point of view,

however, the seeding is very informative. It provides both a

starting point and a set of constraints that the resulting regions

must follow. Another strong point of this approach is that it

does not require the resulting clasts to be internally

homogenous (i.e. the region can have ‘holes’).

From an automation viewpoint, the strength of the CASRG

algorithm is that it does not require human intervention

subsequent to the seeding process. This is achieved by an

automatic choice of threshold, which in turn is derived from a

measure of homogeneity of the grain identified. In contrast,

other algorithms, such as the Lazy Grain Boundary method

proposed in Heilbronner (2000) or that in Bartozzi et al. (2000),

involve human intervention in a series of steps leading to grain

boundary detection. Ideally, one would like to eliminate the

seeding procedure as well, i.e. to have a completely automated

procedure. However, any such algorithm will not possess the

information inherent in seeding, thus making the problem that

much harder.

Measurements made from CASRG regions appear to be in

close agreement with those made by careful manual

measurement. However, it must be remembered that manual

measurements are themselves subject to error (Mulchrone

et al., in review). These observations are only empirical:
a theoretical analysis of the approximation qualities of CASRG

does not exist at present. There are obvious limitations to the

applicability of CASRG. It works in a scenario where the clasts

have (roughly) the same colour internally, i.e. for clasts such as

quartz grains. Thus it will fail in situations where clasts have a

more complicated structure, such as twinned feldspars. Even in

this limited setting, CASRG appears not to perform well in

certain situations. In particular, three situations that we have

noted are (a) when clast sizes are small, (b) when clasts are in

extinction and (c) when there is significant undulose extinction.

These problems can be significantly overcome by adopting a

seeding selection protocol that selects larger clasts that are

optically not in extinction and exhibit low internal contrast due

to undulose extinction. When one considers that the optimum

sample size for most stain analysis methods is less than 200

data points (Meere and Mulchrone, 2003), there should be no

difficulty in obtaining sufficiently large data sets with such a

protocol.

Like many automation processes, there is a trade-off here

between speed and accuracy. What the validation in Section 4

demonstrates is that within the limitations discussed above,

CASRG has the potential of saving time, with reasonably

accurate answers. This is particularly true in the context of the

features examined in Section 4.2. Although the CASRG

algorithm itself is quite computationally intensive (requiring

several minutes on a fast workstation), this time should not be a

consideration because (a) it requires no subsequent interven-

tion after the seeding and (b) this time will decrease with more

efficient algorithms and faster computers.

There are undoubtedly aspects of this algorithm that can be

improved by subsequent research. One possibility that suggests

itself is the incorporation of additional, case specific,

constraints. Also the nature of the algorithm is such that it

should prove relatively straightforward to extend it to

situations where we have more information, such as multiple

polarising angles.
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